Skip to main content

Nanoparticles: Functionalization and Multifunctional Applications in Biomedical Sciences

Buy Article:

$63.00 plus tax (Refund Policy)


Rapid innovations in nanomedicine have increased the likelihood that engineered nanomaterials will eventually come in contact with humans and the environment. The advent of nanotechnology has created strong interest in many fields such as biomedical sciences and engineering field. Central to any significant advances in nanomaterial based applications will be the development of functionalized nanoparticles, which are believed to hold promise for use in fields such as pharmaceutical and biomedical sciences. Early clinical results have suggested that functionalization of nanoparticles with specific recognition chemical moieties indeed yields multifunctional nanoparticles with enhanced efficacy, while simultaneously reducing side effects, due to properties such as targeted localization in tumors and active cellular uptake. A prerequisite for advancing this area of research is the development of chemical methods to conjugate chemical moieties onto nanoparticles in a reliable manner. In recent years a variety of chemical methods have been developed to synthesize functionalized nanoparticles specifically for drug delivery, cancer therapy, diagnostics, tissue engineering and molecular biology, and the structure-function relationship of these functionalized nanoparticles has been extensively examined. With the growing understanding of methods to functionalize nanoparticles and the continued efforts of creative scientists to advance this technology, it is likely that functionalized nanoparticles will become an important tool in the above mentioned areas. Therefore, the aim of this review is to provide basic information on nanoparticles, describe previously developed methods to functionalize nanoparticles and discuss their potential applications in biomedical sciences. The information provided in this review is important in regards to the safe and widespread use of functionalized nanoparticles particularly in the biomedicine field.

Keywords: Asymmetric group; Bio-functionalization; Cancer therapy; Computed Tomography (CT); Drug delivery; Functionalized nanoparticles; Glycol chitosan NPs; Nanoparticles; Nanotechnology; Pluronics; Positron-Emission Tomography (PET); Postpolymerization; Tetrahydrofuran; Thiol group; Tissue engineering; agglomeration; alginate hydrogels; amines; aminopropylsilane; aminopropyltriethoxy silane and concluded that the functionalized antibody IgG; aminothiol; ammonium; anticancer drugs; asialoglycoprotein; biphosphonates; blood brain barrier; cGRD; chalcogenides; collagen; cytocidal agents; cytomegalovirus NPs; disulfides; endocytotic pathway; functionalizing NPs; gene delivery; glutamic acids; glycosidic moieties; hepatic sinusoidal endothelium; immunogenicity; lysosomal enzymes; magnetic particle imaging; microfabrication; nitriles; octanethiol; oligomeric; organosulfur; osteoarthritis; oxide; phagocytosis; phosphines; polymeric; radioimmu-notherapy; scFv antibody; stoichiometrical functionalization; thiolated undecanoic acid; thiols; tiopronin; tissue transplantation; tomography; tumor cell

Document Type: Research Article


Publication date: 2010-12-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more