Skip to main content

Scaffold Vascularization: A Challenge for Three-Dimensional Tissue Engineering

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

The prevalent challenge facing tissue engineering today is the lack of adequate vascularization to support the growth, function, and viability of tissue substitutes that require blood vessel supply. Researchers rely on the increasing knowledge of angiogenic and vasculogenic processes to stimulate vascular network formation within three-dimensional tissue constructs. These processes are mainly endothelial cell-regulated, although in the context of tissue engineering, specific interactions with scaffold materials, growth factors and other cell types may require in vitro vascularization schemes to be altered accordingly. To better mimic the complete in vivo environment, increasing attention is given to the integration of co-cultures and mechanical conditioning in bioreactors. Such approaches show great promise for the enhancement of the functionality and clinical applicability of tissue engineering constructs.

This paper reviews some scaffold materials used in tissue engineering and the effect of their properties on the vascularization process. Also, it specifically addresses the pivotal role of biomaterials vascularization in tissue engineering applications, along with the effect of angiogenic factors and adhesive molecules on angiogenesis. Assays and markers of angiogenesis are also outlined. One section highlights the need for bioreactor cultures and mechanical conditioning in controlling endothelial cell responses. Finally, we conclude with a brief section on the effects of oxygen concentration and hypoxia over microvessel formation.



Keywords: Collagens; Expanded polytetrafluoroethylene; FAK; GAG; HSPG; Heparan sulphate proteoglycans; PTFE; Polyanhydrides; Polysaccharides; VEGF; VEGFA; VEGFB; VEGFC; VEGFD; Vascularization; adhesion molecules; angiogenesis; angiogenesis markers; bFGF; biomaterials; bioreactor; ePTFE; fibroblast growth factor; focal adhesion kinases; glycosaminoglycans; growth factors; hypoxia; mechanical conditioning; microvessels; multiplexins; placental-like growth factor; polytetrafluoroethylene; porous scaffolds; vascular endothelial growth factor

Document Type: Research Article

DOI: https://doi.org/10.2174/092986710793205327

Publication date: 2010-01-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more