Skip to main content

Drug Target Identification for Neuronal Apoptosis Through a Genome Scale Screening

Buy Article:

$55.00 plus tax (Refund Policy)

During normal nervous system development, physiologically appropriate neuronal apoptosis contributes to a sculpting process that removes approximately one-half of all neurons born during neurogenesis. However, neuronal apoptosis subsequent to this developmental window is physiologically inappropriate for most systems and can contribute to neurodegenerative diseases. Neuronal apoptosis is characterized by specific morphological events and requires the activation of an intrinsic transcriptional program. With the completion of genome sequencing in humans and model organisms, and the advent of DNA microarray technology, the transcriptional cascades and networks regulating neuronal apoptosis are being elucidated providing new potential pharmacological targets. This review will introduce the reader to this genomic approach and illustrate with a few examples a methodological strategy for the rational selection of pharmacological targets and the development of neuroprotective agents.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Apoptosis; drug; neuronal; pharmacogenomics; programmed cell death; systems biology; target

Document Type: Research Article

Affiliations: Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Via Paolo Gaifami, 18, 95125 Catania, Italy.

Publication date: 2010-09-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more