Skip to main content

New Therapeutic Strategy for Parkinson's and Alzheimer's Disease

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

The development of potential neuroprotective therapies for neurodegenerative diseases (Parkinson's and Alzheimer's Disease) must be based on understanding their molecular and biochemical pathogenesis. Many potential pathways of neuronal cell death have been implicated in a mouse model of neurodegenerative disease, including excitotoxicity, toxicity from reactive oxygen species (superoxide anion, nitric oxide, hydroxyl radical), apoptosis (caspase-dependent and -independent pathways), necrosis and glial injury. Some agents that act on these pathways may be available for protecting the brain against chronic neurodegenerative conditions like Parkinson's and Alzheimer's disease. Drugs currently used to treat neurological disease and injuries provide temporary relief of symptoms but do not stop or slow the underlying neurodegenerative process. Restorative therapies for Parkinson's Disease are currently focused on cell replacement and administration of growth factors and small-molecule neurotrophic agents. The new experimental drugs, by contrast, target the common, underlying cause of destructive process of brain cell death. For example, p53 inhibitors attack a key protein involved in nerve cell death and represent a new strategy for preserving brain function following sudden injury or chronic disease. Analogues of pifithrin-alpha (PFT), which was shown in previous studies to inhibit p53, were designed, synthesized and tested to see whether they would work against cultured brain cells and animal models of neurodegenerative disease.

Moreover, several agents based on the predominant anti-amyloid strategy, targeting amyloid-beta (Aβ) peptide, which aggregates in the plaques that are a hallmark of Alzheimer's disease, would affect disease progression. Researchers are already making great strides in developing a vaccine for this progressive brain disorder. Immunization could offer a way to blunt or even prevent the deadly, memory-robbing disease.

Here we review many of potential neuroprotective therapies, and strategies that might be suited to the development of innovative approaches that prevent degeneration and restore function in Parkinson's disease.

Keywords: Alzheimer; Parkinson's disease; glial injury

Document Type: Research Article

DOI: https://doi.org/10.2174/092986710791859324

Affiliations: Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Torre Biologica - Policlinico Universitario Via C. Valeria - Gazzi - 98100 Messina, Italy.

Publication date: 2010-09-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more