Skip to main content

Comparative Characterization of Experimental and Calculated Lipophilicity and Anti-Tumour Activity of Isochromanone Derivatives

Buy Article:

$55.00 plus tax (Refund Policy)

Compound lipophilicity connected to ADME(T)a has great importance in drug development and it has to be evaluated by the generally used drug developmental process. In addition to the importance of lipophilicity in ADMET, recently it has been reported that lipophilicity of small molecules correlates with their antiproliferative activity because of certain specific hydrophobic and lipophilic interactions. Due to the complexity of ADME(T) parameters an efficient and fast method is needed to characterize the many promising candidate lead molecules as a preselection in order not to be rejected from the latter phase of drug development. In the present paper we provide an overview of the importance of lipophilicity of drug candidates for biological action and for ADME(T) and describe a novel approach for drug-likeness characterization of a molecular library using correlation study between lipophilicity and biological activity. Lipophilicity and molecular characteristics have been measured, predicted and optimized for a diverse library from which the best members have been selected to describe their biological, chemical and drug-likeness properties. Molecules were selected from the family of α,β-unsaturated ketones and thorough HPLC characterization for lipophilicity and morphological, antiproliferative and flow cytometric studies were carried out on them. Based on the results 17 member isochromanone library including E and Z geometric isomers were selected for further characterization. In this focused library linear correlation has been found between the calculated and measured lipophilicity and significant parabolic correlation was found between the antiproliferative effect and lipophilicity. Using our efficient and fast method, from a diverse library, we identified an outstandingly effective inhibitor of A431 tumour cell growth via a PARPa cleavage dependent apoptosis. In summary the optimized HPLC analyses of lipophilicity combined with the cell-culture assay, introduced above, resulted in the determination of an optimal lipophilicity range. This optimized lipophilicity range should be used in designing novel antiproliferative compounds.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Lipophilicity; antiproliferative effect; apoptosis; isochromanone derivative

Document Type: Research Article

Affiliations: Pathobiochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.

Publication date: 2010-02-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more