Skip to main content

The Potential of Embryonic Stem Cells Combined with -omics Technologies as Model Systems for Toxicology

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

The derivation of pluripotent embryonic stem (ES) cell lines has opened up new areas of research in basic and applied science, most significantly in developmental biology and regenerative medicine. While application-oriented research has for the most part focussed on obtaining differentiated, organotypic cells from ES cells for future cell grafting therapies, ES cells have more immediate potential for use in toxicological in vitro assays used during drug development.

ES cells are derived from blastocyst-stage embryos and offer an in vitro model for early development, thus enabling tests for teratogenicity testing in a human cell culture system and avoiding the pitfalls of inter-species differences. Differentiated, organotypic cells obtained from ES cells can potentially replace the primary cells and cell lines currently used for in vitro toxicology by offering a more consistent and potentially limitless source of differentiated cells. This can facilitate the establishment of comprehensive toxicogenomics and -proteomics databases and complement current databases that rely on data obtained from animal experiments. More recently, induced pluripotent stem (iPS) cells with ES cell-like properties have been obtained through reprogramming of somatic cells, thus enabling the generation of disease-specific cell lines.

We review the potential of combining ES cells and ES cell-derived somatic cells with “omics” technologies for in vitro toxicology with a particular emphasis on the development of toxicogenomics and toxicoproteomics signatures. A separate section describes the potential of iPS cells for toxicology.

Keywords: embryonic; potential

Document Type: Research Article

DOI: https://doi.org/10.2174/092986709789909657

Affiliations: University of Cologne, Center of Physiology and Pathophysiology, Institute of Neurophysiology, Robert Koch Str. 39, Cologne, Germany.

Publication date: 2009-12-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more