If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Quantification of Low-Density and High-Density Lipoproteins in Human Serum by Material Enhanced Infrared Spectroscopy (MEIRS)

$63.10 plus tax (Refund Policy)

Buy Article:

Abstract:

A key risk factor in the development of atherosclerosis is a high concentration of serum low density lipoprotein (LDL)-cholesterol. The main purpose of this study was to assess the LDL and high density lipoprotein (HDL) content in human serum by employing near-infrared (NIR) spectroscopy and multivariate calibration techniques. Initially a qualitative principal component analysis (PCA) based cluster model was generated to evaluate the feasibility of NIRS for classifying and identifying the LDL and HDL-cholesterol. Therefore TiO2 beads were used as an adsorbent for selectively immobilizing LDL and HDL-cholesterol and further analysing the incubated and washed samples via NIR diffuse reflection spectroscopy. A principle component regression (PCR) model of 24 LDL standards in a range from 500 - 3000 ppm (clinical value is 1500 ppm) and a partial least squares regression (PLSR) model of 25 HDL standards in a range from 100 - 1000 ppm (clinical value is 400 ppm) were computed. Furthermore, the wavenumber region between 4000 cm-1 and 7240 cm-1 was found comprising the main spectral information regarding the TiO2-LDL and TiO2-HDL composites. The regression coefficients (r) for LDL and HDL were > 0.99 (calibration curve) and > 0.97 (validation curve), respectively. The PCR model of TiO2-LDL showed a standard error of estimation (SEE) of 122.80 ppm and a standard error of prediction (SEP) of 121.15 ppm while the PLSR model of TiO2-HDL showed 47.70 and 47.14 ppm, respectively. In order to determine the concentration of HDL in real serum samples, LDL was removed by adding a precipitation reagent containing 10 mg/mL magnesium dextran-sulfate, followed by incubation and centrifugation. The pretreated serum samples were predicted by the PLSR model while the standard deviation (SD) from the reference to the NIR predicted values of six test samples in a concentration range from 500 - 2500 ppm showed < 10 %.

These results indicate the usefulness of the NIR spectroscopy (NIRS) as a potential alternative or even supplementary clinical method for the quick determination of LDL and HDL in human serum.

Keywords: High density lipoprotein; low density lipoprotein; material enhanced; multivariate calibration; near-infrared spectroscopy; partial least squares regression

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/092986709789760625

Affiliations: Head of Spectroscopy Group, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, 6020 Innsbruck, Austria.

Publication date: December 1, 2009

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more