Skip to main content

Conformational Sampling and Energetics of Drug-Like Molecules

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

The pharmacological properties of small organic molecules depend on their three-dimensional (3D) structure. That includes physico-chemical properties (e.g. solubility, partition equilibria) and molecular recognition such as binding to a therapeutic macromolecular target. At physiological temperature, the 3D structure of a flexible small molecules is expected to cover an ensemble of energetically accessible conformations. Therefore, it is of fundamental and practical importance to be able to relate the energetics of a molecule to its conformational preferences and derived properties, a discipline known as conformational analysis.

The first step of conformational analysis is the generation of the conformers, referred to as conformational sampling. This is typically performed primarily using computational chemistry methods. Taking a fresh look at these methods for a broad medicinal chemistry audience is the object of the present review. Indeed, conformational sampling methods continue to be developed, improved and tested. They underpin much of the detailed analysis of structure-activity relationships on selected chemical series, but also the preparation of large conformational libraries of generic compounds and their exploitation for virtual screening.

In recent years, the conformational models of active compounds have been examined to see how frequently they capture their target-bound bioactive conformation, as revealed by X-ray crystallography. This provided a context to scrutinize the intrinsic conformational energetics of these bioactive conformers, and this subject is still intensely debated. Another line of investigation concerns the conformational diversity of the 3D models, and how well they cover the conformational and pharmacophoric spaces.

This review addresses in general terms: i) the basic principles of conformational analysis, including modern computational estimates of intramolecular energy and how those are mapped on the molecular potential energy surface, ii) some experimental contributions to probing of the small molecule conformations, iii) the various computational methods available to generate conformational models, iv) the conformational properties of the bioactive conformers, and v) attempts to quantify the coverage of the conformational models and the controlling parameters.

Keywords: Conformational analysis; conformational coverage; drug design; flexibility; molecular modeling; molecular recognition; structure prediction

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/092986709789057680

Affiliations: Vernalis (R&D) Ltd., Granta Park, Abington, Cambridgeshire, CB21 6GB, UK.

Publication date: September 1, 2009

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
ben/cmc/2009/00000016/00000026/art00004
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more