Skip to main content

In Situ Modulation of Oxidative Stress: A Novel and Efficient Strategy to Kill Cancer Cells

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Cancer cells show an up-regulation of glycolysis, they readily take up vitamin C, and they appear more susceptible to an oxidative stress than the surrounding normal cells. Here we compare, analyse and discuss these particular hallmarks by performing experiments in murine hepatomas (TLT cells) and freshly isolated mouse hepatocytes. The results show that rates of lactate formation are higher in TLT cells as compared to mouse hepatocytes, but their ATP content represents less than 25% of that in normal cells. The uptake of vitamin C is more important in hepatoma cells as compared to normal hepatocytes. This uptake mainly occurs through GLUT1 transporters. Hepatoma cells have less than 10% of antioxidant enzyme activities as compared to normal hepatocytes. This decrease includes not only the major antioxidant enzymes, namely catalase, superoxide dismutase and glutathione peroxidase, but also the GSH content. Moreover, catalase is almost not expressed in hepatoma cells as shown by western blot analysis. We explored therefore a selective exposure of cancer cells to an oxidative stress induced by pro-oxidant mixtures containing pharmacological doses of vitamin C and a redox active compound such as menadione (vitamin K3). Indeed, the combination of vitamin C (which accumulates in hepatoma cells) and a quinone undergoing a redox cycling (vitamin K3) leads to an oxidative stress that kills cancer cells in a selective manner. This differential sensitivity between cancer cells and normal cells may have important clinical applications, as it has been observed with other pro-oxidants like Arsenic trioxide, isothiocyanates, Adaphostin.

Keywords: Antioxidant enzymes; ascorbate; glycolysis; hepatoma; menadione redox cycling; vitamin C uptake

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/092986709788186057

Affiliations: avenue E. Mounier 73, 1200 Bruxelles, Belgium.

Publication date: May 1, 2009

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
ben/cmc/2009/00000016/00000015/art00001
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more