Skip to main content

CRM1-Mediated Nuclear Export of Proteins and Drug Resistance in Cancer

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Expression levels of intact tumor suppressor proteins and molecular targets of anti-neoplastic agents are critical in defining cancer cell drug sensitivity; however, the intracellular location of a specific protein may be as important. Many tumor suppressor proteins must be present in the cell nucleus to perform their policing activities or for the cell to respond to chemotherapeutic agents. Nuclear proteins needed to prevent cancer initiation or progression or to optimize chemotherapeutic response include the tumor suppressor proteins p53, APC/β-catenin, and FOXO family genes; negative regulators of cell cycle progression and survival such as p21CIP1and p27KIP1; and chemotherapeutic targets such as DNA topoisomerases I and IIα. Mislocalization of a nuclear protein into the cytoplasm can render it ineffective as a tumor suppressor or as a target for chemotherapy. Blocking nuclear export of any or all of these proteins may restore tumor suppression or apoptosis or, for topoisomerases I and IIα, reverse drug resistance to inhibitors of these enzymes. During disease progression or in response to the tumor environment, cancer cells appear to acquire intracellular mechanisms to export anti-cancer nuclear proteins. These mechanisms generally involve modification of nuclear proteins, causing the proteins to reveal leucine-rich nuclear export signal protein sequences. Subsequent export is mediated by CRM1. This review defines the general processes involved in nuclear export mediated by CRM1/RanGTP (exportin/XPO1), examines the functions of individual tumor suppressor nuclear proteins and nuclear targets of chemotherapy, and explores potential mechanisms of cancer cells to induce export of these proteins. Novel drugs that could potentially counteract nuclear export of specific proteins are also discussed.

Keywords: APC/β-catenin; CRM1; FOXO; P21cip1; drug resistance; p27KIP1; p53; topoisomerase I; topoisomerase IIα

Document Type: Research Article

DOI: https://doi.org/10.2174/092986708786242859

Affiliations: H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.

Publication date: 2008-11-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more