Identification of Apoptotic Drugs: Multiparametric Evaluation in Cultured Hepatocytes

$63.00 plus tax (Refund Policy)

Buy Article:

Abstract:

It is now recognized that necrosis is not the only mechanism responsible for chemically-induced cell death. It is believed that apoptosis could be the major form of cell death induced by toxicants and that necrosis is associated only with circumstances of gross cell injury. The liver is a key target organ for drug toxicity and an important effort in drugdiscovery deals with the identification of molecules with hepatotoxic potential. The importance of apoptosis in toxicology has been underestimated given the difficulty of identifying apoptotic cells in in vitro models when apoptosis normally degenerates to secondary necrosis. Nowadays, the central role played by apoptosis in the toxicity of many xenobiotics and P450-generated metabolites is recognized. The detection of drug-induced apoptosis constitutes one of the highest priorities of the pharmaceutical industry. Different markers aimed at identifying apoptotic compounds irrespectively of the pathway of how cell apoptosis was initiated have been proposed. The aim of the present paper is to review the utility of some available in vitro strategies for studying drug-induced liver apoptosis. The evaluation of apoptotic or anti-apoptotic effects of chemicals in hepatocytes is illustrated by several examples including model apoptotic compounds, pharmaceutical drugs which have been shown to induce apoptosis as an adverse effect; and drugs preventing apoptosis. By combining appropriated markers, apoptosis can be detected in hepatocytes long before cell necrosis, at sub-cytotoxic concentrations of the drugs. The possibility of using small amounts of cells cultured in multiwell formats and automation has notably contributed to develop reproducible, reliable, sensitive, easy-to-handle and rapid multiparametric assays that are ideally amenable to high throughput screening (HTS).

Keywords: Apoptosis; Bcl2; DNA analysis; DNA fragmentation; caspases; cytochrome c; flow cytometry; hepatocytes

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/092986708785132861

Affiliations: Unidad de Hepatologia Experimental. Centro de Investigacion, Hospital La Fe, Avda Campanar 21, 46009-Valencia, Spain.

Publication date: August 1, 2008

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more