If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

The Role of Glycogen Synthase Kinase-3β in Normal Haematopoiesis, Angiogenesis and Leukaemia

$63.10 plus tax (Refund Policy)

Buy Article:

Abstract:

Glycogen synthase kinase 3 beta (GSK-3β) was one of the first kinases identified and studied, initially for its role in the regulation of glycogen synthesis. Over the past decade, interest in GSK-3β has grown far beyond glycogen metabolism, and this is due in large measure to the critical role that GSK-3β plays in the regulation of many other cellular processes, particularly cell proliferation and apoptosis. GSK-3β has been shown to regulate the proteolysis and sub-cellular compartmentalization of a number of proteins directly involved in the regulation of cell cycling, proliferation, differentiation and apoptosis. GSK-3β also regulates the degradation of proteins that regulate gene expression and thus affects a variety of important cell functions. Specifically, GSK-3β controls the degradation of β- catenin, the main effector of Wnt that regulates haematopoiesis and stem cell function. In this case GSK-3β is a negative regulator of Wnt. In contrast, GSK-3β positively regulates NF-κB, another important biochemical pathway also involved in the regulation of multiple aspects of normal and aberrant haematopoiesis. GSK-3β regulates degradation of IκB, a central inhibitor of NF-κB. In this way, GSK-3β acts to control the resistance of leukaemic cells to chemotherapy through the modulation of NF-κB, a critical factor in maintaining leukaemic cell growth. In addition, GSK-3β regulates the pro-inflammatory activity of NF-κB. As GSK-3β is a pleiotropic regulator, inhibitors may increase the range of novel anti-leukaemic and anti-inflammatory drugs that control immune response.

Keywords: GSK-3β inhibition; Haematopoiesis; NF-κB; Wnt; angiogenesis; haematopoietic stem cell; leukaemogenesis; β-catenin

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/092986708784638834

Affiliations: Sydney Cord & Marrow Transplant Facility, Sydney Children's Hospital, Australia.

Publication date: June 1, 2008

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more