Skip to main content

Nuclear Magnetic Resonance Spectroscopy and Genetic Disorders

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Nuclear magnetic resonance spectroscopy has been exploited to study the metabolic characteristics (phenotype) of genetic disorders by taking advantage of some unique characteristics of the technique.

The first application, metabolic profiling for diagnosis and therapeutic monitoring in vitro, demonstrates the exceptional diversity of metabolites detected by NMR, and has resulted in new interest in significant metabolites largely ignored previously because other techniques do not detect them, e.g. betaine and creatine. Moreover, previously ‘unknown’ genetic disorders have been detected and characterised The same NMR technique can be effectively exploited for metabolic profiling of mutation models in yeast and mice, leading to a prominent role in the development of large scale metabolomic profiling to link genomic information with phenotype.

The second application, magnetic resonance spectroscopy (MRS), exploits the unique possibility of studying human metabolism in vivo, which permits intracellular rather than extracellular metabolic profiling. When it is possible to detect the precise diagnostic metabolites in vivo, investigators have been able to link clinical status with cellular biochemistry, sometimes questioning the clinical value of extracellular (plasma) metabolite measurements. Thus, claims have been made that brain phenylalanine concentrations match more closely the clinical status of patients with phenylketonuria. These studies in vivo have also led to new diagnoses e.g. the disorders of creatine synthesis and transport, highlighting a new category of brain syndromes.

Future applications of NMR are cautiously considered as they are critically dependent on continued improvement in resolution and sensitivity in turn generated by developments in magnet design and higher fields.

Keywords: Magnetic resonance spectroscopy; choline; genetic disorders; inherited disorders of metabolism; metabolomics; mitochondrial myopathy; organic aciduria; phenylketonuria

Document Type: Research Article

DOI: https://doi.org/10.2174/092986708783330719

Publication date: 2008-01-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more