Skip to main content

Oxidative RNA Damage and Neurodegeneration

Buy Article:

$55.00 plus tax (Refund Policy)

Although cellular RNA should be subject to the same oxidative insults as DNA and other cellular macromolecules, oxidative damage to RNA has not been a major focus in investigating the magnitude and the biological consequences of the free radical damage. However, because RNA is mostly single-stranded and its bases are not protected by hydrogen bonding and are less protected by specific proteins, RNA may be more susceptible to oxidative insults than DNA. Thereafter, oxidative damage to protein-coding RNA or noncoding RNA will potentially cause errors in proteins or dysregulation of gene expression. While less lethal than mutations in genome, such non-acutely lethal insults to cells might be associated with underlying mechanisms of several human diseases, especially chronic degeneration. Recently, oxidative RNA damage has been described in several neurodegenerative diseases including Alzheimer disease, Parkinson disease, dementia with Lewy bodies, and prion diseases. Of particular interest, oxidative RNA damage is a feature in vulnerable neurons at the very earliest-stages of these diseases, suggesting that RNA oxidation may actively contribute to the onset or to the development of disease. Mechanistically speaking, an increasing body of evidence suggests that the detrimental effects of oxidative RNA damage to protein synthesis are attenuated, at least in part, by the existence of mechanisms that avoid the incorporation of the damaged ribonucleotides into the translational machinery. Further investigations toward understanding of the consequences and processing mechanisms related to oxidative RNA damage may provide significant insights into the pathogenesis and therapeutic strategies for neurodegenerative and other degenerative diseases.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: 8-hydroxyguanosine; Alzheimer disease; Parkinson disease; RNA; neurodegeneration; oxidative damage

Document Type: Research Article

Affiliations: Department of Psychiatry and Neurology,Asahikawa Medical College, Higashi 2-1-1-1, Midorigaoka, Asahikawa 078-8510, Japan.

Publication date: 2007-12-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more