Skip to main content

Hypokalemia: A Practical Approach to Diagnosis and its Genetic Basis

Buy Article:

$63.00 plus tax (Refund Policy)

Hypokalemia is a common and important finding in hospitalized patients because it may provoke cardiac arrhythmias and/or respiratory arrest. Our aim is to suggest better diagnostic tools and therapeutic principles, and summarize new molecular advances that are linked to hypokalemia. Measurements in freshly-voided urine to evaluate potassium (K+) excretion and an assessment of the acid-base status in blood can help differentiate between the various causes of hypokalemia. In patients with a low rate of K+ excretion, hypokalemia can be explained by an acute shift of K+ into cells, intestinal K+ loss, or prior renal K+ excretion. Patients with a high rate of K+ excretion usually have metabolic acid-base disorders. In patients with hyperchloremic metabolic acidosis, an assessment of the rate of excretion of ammonium (NH4 +) in the urine separates those with renal tubular acidosis (RTA) (low NH4 + excretion) from those with causes other than RTA. In patients with metabolic alkalosis, a high blood pressure helps to distinguish between a state with high mineralocorticoid activity from others with extracellular fluid (ECF) volume contraction. Measurement of renin activity, aldosterone, and cortisol levels in plasma help to differentiate between the causes with mineralocorticoid excess whereas the urine chloride (Cl-) concentration may reveal the basis for renal Na+ wasting and distinguish it from non-renal Na+ loss. The treatment of hypokalemia is guided by the risk imposed by hypokalemia, magnitude of the K+ deficit, route of the K+ administration, available K+ preparations, adjuncts to therapy, and special associated conditions. Recent molecular advances in inherited hypokalemic disorders affecting transcellular K+ shift, gastrointestinal and renal K+ excretion are also discussed.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Acid-base; aldosterone; ammonium; blood pressure; genetic lesions; renin; urine electrolytes

Document Type: Research Article

Affiliations: Division of Nephrology,Department of Medicine, Tri-Service General Hospital, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.

Publication date: 01 June 2007

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more