Skip to main content

Interferon: Cellular Executioner or White Knight?

Buy Article:

$55.00 plus tax (Refund Policy)

Interferons (IFNs) are a family of pleiotropic cytokines that typically exhibit antiviral, antiproliferative, antitumor, and immunomodulatory properties. While their complex mechanisms of action remain unclear, IFNs are used clinically in the treatment of viral infections, such as hepatitis B and hepatitis C, and remain the primary treatment for a limited number of malignancies, such as melanoma, hairy cell leukemia, and non-Hodgkin's lymphoma and in autoimmune diseases such as multiple sclerosis. IFNs not only regulate somatic cell growth and division but also influence cell survival through the modulation of apoptosis. Paradoxically, IFNs are described to be both pro- and anti-apoptotic in nature. The biological effects of IFNs are primarily mediated via activation of the JAK/STAT pathway, formation of the ISGF3 and STAT1:STAT1 protein complexes, and the subsequent induction of IFN-stimulated genes. However, the activation of JAK/STAT-independent signal transduction pathways also contribute to IFN-mediated responses. To further demonstrate the complexity of the downstream events following stimulation, oligonucleotide microarray studies have shown that in excess of 300 genes are induced following treatment with IFN, some of which are crucial to the induction of apoptosis and cell growth control. In this review we describe the recent advances made in elucidating the various signaling pathways that are activated by IFNs and how these diverse signals contribute to the regulation of cell growth and apoptosis and inhibition of viral replication. Furthermore, we highlight the role of specific signaling molecules and the function(s) of particular IFN-stimulated genes that have been implicated in determining cell fate in response to IFN, as well as the clinical experience of IFN immunotherapy.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Interferon; JAK/STAT signaling; antiviral; apoptosis; cancer; clinical applications; immunomodulation; interferon receptor

Document Type: Research Article

Affiliations: Laboratory of Experimental Immunology, Bldg 560, Rm 31-70, NCI-Frederick, Frederick, MD 21702-1201, USA.

Publication date: 2007-05-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more