Skip to main content

Targeting the Inflammatory Response in Healing Myocardial Infarcts

Buy Article:

$55.00 plus tax (Refund Policy)

Healing of myocardial infarcts depends on an inflammatory cascade that ultimately results in clearance of dead cells and matrix debris and formation of a scar. Myocardial necrosis activates complement, Nuclear Factor (NF)-kB and Toll-like Receptor (TLR)-dependent pathways, and generates free radicals, triggering an inflammatory response. Chemokines and cytokines are markedly induced in the infarct and mediate recruitment and activation of neutrophils and mononuclear cells. Extravasation of platelets and plasma proteins, such as fibrinogen and fibronectin, results in formation of a clot, consisting of platelets embedded in a mesh of crosslinked fibrin. This provisional matrix provides a scaffold for migration of cells into the infarct. Monocytes differentiate into macrophages and secrete fibrogenic and angiogenic growth factors inducing formation of granulation tissue, containing myofibroblasts and neovessels. Repression of proinflammatory cytokine and chemokine synthesis, mediated in part through Transforming Growth Factor (TGF)-β and Interleukin (IL)-10, is critical for resolution of the inflammatory infiltrate and transition to fibrous tissue deposition. Infarct myofibroblasts deposit extracellular matrix proteins and a collagen-based scar is formed. As the wound matures, fibroblasts undergo apoptosis and neovessels regress, resulting in formation of a scar with a low cellular content containing dense, cross-linked collagen. The pathologic and structural changes associated with infarct healing directly influence ventricular remodeling and affect prognosis in patients with myocardial infarction. Understanding the mechanisms involved in the regulation of the post-infarction inflammatory response, and the spatial and temporal parameters of wound healing is necessary in order to identify specific molecular targets for therapeutic intervention.

No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Infarction; chemokine; cytokine; extracellular matrix; inflammation; macrophage; neutrophi; remodeling

Document Type: Research Article

Affiliations: Section of Cardiovascular Sciences, Baylor College of Medicine, One Baylor Plaza M/S F-602,Houston TX 77030, USA.

Publication date: 2006-07-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more