If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Anti-Inflammatory Immunotherapy for Multiple Sclerosis/Experimental Autoimmune Encephalomyelitis (EAE) Disease

$63.10 plus tax (Refund Policy)

Buy Article:

Abstract:

Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory diseases of the central nervous system (CNS) characterized by localized areas with demyelination. Disease is believed to be an autoimmune disorder mediated by activated immune cells such as T- and B-lymphocytes and macrophages/microglia. Lymphocytes are primed in the peripheral tissues by antigens, and clonally expanded cells infiltrate the CNS. They produce large amounts of inflammatory cytokines, nitric oxide (NO) that lead to demyelination and axonal degeneration. Although several studies have shown that oligodendrocytes (OLGs), the myelin-forming glial cells in the CNS, are sensitive to cell death stimuli, such as cytotoxic cytokines, anti-myelin antibodies, NO, and oxidative stress, in vitro, the mechanisms underlying injury to the OLGs in MS/EAE remain unclear. The central role of glutamate receptors in mediating excitotoxic neuronal death in stroke, epilepsy, trauma and MS has been well established. Glutamate is the major excitatory amino acid transmitter within the CNS and it's signaling is mediated by a number of postsynaptic ionotropic and metabotropic receptors. Inflammation can be blocked with anti-cell adhesion molecules MAb, simultaneously protected oligodendrocytes and neurons against glutamatemediated damage with the AMPA/kainate antagonist NBQX, and the NMDA receptor antagonist GPE, could thus be effective therapies for multiple sclerosis

Keywords: cell adhesion molecules; cytokine; demyelination; experimental autoimmune encephalomyelitis; immunotherapy; multiple sclerosis; neurons; neuroprotection; oligodendrocytes

Document Type: Review Article

DOI: http://dx.doi.org/10.2174/092986705774462833

Affiliations: Department of Molecular Medicine & Pathology, Faculty of Medicine and Health Science, The University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand.

Publication date: December 1, 2005

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more