Skip to main content

Confocal Fluorescence Microscopy for High-Throughput Screening of G-Protein Coupled Receptors

Buy Article:

$63.00 plus tax (Refund Policy)


In the pharmaceutical industry, G-protein coupled receptors (GPCRs) are the most successful group of therapeutic targets. Finding compounds that interfere with the ligand-GPCR interaction in a specific and selective way is a major focus of pharmaceutical research today. As compound libraries of large pharmaceutical companies have increased to hundreds of thousands of test compounds, there is a growing need for miniaturization of drug discovery assays to save bioreagents and to reduce the consumption of test compounds.

Due to its high sensitivity combined with a femtoliter-sized measurement volume, confocal fluorescence microscopy enables designs for GPCR binding assays with tiny sample volumes. The GPCRs are prepared in the form of plasma membrane fragments from GPCR-overexpressing cells or may be integrated into virus-like particles (VLiPs). One technique to extract binding data from confocal fluorescence experiments is the socalled fluorescence intensity distribution analysis (FIDA). In this review article, we describe the applicability of FIDA to GPCR-focussed high-throughput screening (HTS) and compare FIDA to two other GPCR-adaptable drug discovery techniques for ligand binding studies, the scintillation proximity assay (SPA) and macroscopic fluorescence polarization (FP) measurements. FIDA measures the absolute concentrations of both GPCR-bound and unbound ligand, thereby providing an internal control to the drug screening data. FIDA is amenable to work with relatively low amounts of GPCRs so that the assay may be carried out with biomembranes of a low GPCR density. Moreover, the fluorescence intensity readout of the FIDA technique may be combined with other confocal fluorescence readouts such as fluorescence anisotropy or lifetime.

The combination of a low sample volume with an information-rich measurement means that confocal fluorescence spectroscopy can bring substantial benefits as a bioassay platform to pharmaceutical GPCRdirected research.

Keywords: binding assays; confocal fluorescence; fluorescence intensity distribution analysis; g-protein coupled receptors; high-throughput screening; virus-like particles

Document Type: Review Article


Affiliations: Department of Integrated Lead Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str.65, D-88397 Biberach, Germany.

Publication date: 2005-10-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more