If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Poly(ADP-ribose)polymerase Inhibition - Where Now?

$63.10 plus tax (Refund Policy)

Buy Article:

Abstract:

The poly(ADP-ribose)polymerases (PARPs) catalyse the transfer of ADP-ribose units from the substrate NAD+ to acceptor proteins, biosynthesising polyanionic poly(ADP-ribose) polymers. A major isoform, PARP-1, has been the target for design of inhibitors for over twenty-five years. Inhibitors of the activity of PARP-1 have been claimed to have applications in the treatment of many disease states, including cancer, haemorrhagic shock, cardiac infarct, stroke, diabetes, inflammation and retroviral infection, but only recently have PARP-1 inhibitors entered clinical trial.

Most PARP-1 inhibitors mimic the nicotinamide of NAD+ and the structure-activity relationships are understood in terms of the structure of the catalytic site. However, five questions remain if PARP-1 inhibitors are to realise their potential in treating human diseases. Firstly, the consensus pharmacophore is a benzamide with N-H conformationally constrained anti to the carbonyl-arene bond but this is also a "pharmacophore" for insolubility in water; can water-solubility be designed into inhibitors without loss of potency? Secondly, some potential clinical applications require tissue-selective PARP-1 inhibition; is this possible through prodrug approaches? Thirdly, different diseases may require therapeutic PARP-1 inhibition to be either short-term or chronic; are there potential problems associated with chronic inhibition of this DNA-repair process? Fourthly, PARP-1 is one of at least eighteen isoforms; is isoform-selectivity essential, desirable or even possible? Fifthly, PARP activity can be inhibited in cells by inhibition of poly(ADP-ribose)glycohydrolase (PARG); will this be a viable strategy for future drug design? The answers to these questions will determine the future of disease therapy through inhibition of PARP.

Keywords: chronic; dna repair; glycohydrolase; isoform; parp; poly(adp-ribose)polymerase; poly(adpribose); prodrug; solubility

Document Type: Review Article

DOI: http://dx.doi.org/10.2174/0929867054864778

Affiliations: Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.

Publication date: September 1, 2005

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more