Skip to main content

Combinatorial Natural Products: From Cloning to Analysis

Buy Article:

$63.00 plus tax (Refund Policy)


Medicinal compounds from plants represent one of the largest and most diverse groups of plant secondary metabolites. The advent of advanced bioinformatics tools and modern genetic technology allowed for manipulation of biosynthetic pathways with the potential of generating novel chemical entities. First, public databases of secondary metabolite related enzymes were interrogated to identify relevant plant genes from vinca rosea (Catharanthus roseus) and other species. Genes of interest were tested after cloning by transfection into tobacco cell cultures using DNA viral vectors. The biosynthetic enzymes coded by these genes were over-expressed in the host. Automated solvent extraction procedure was employed to extract secondary metabolites from plant leaf tissues and transfected tobacco cell culture samples. The composition of the extracts was analyzed by state of the art bioanalytical methods such as high performance liquid chromatography and capillary electrophoresis to monitor changes in secondary metabolite patterns.

Keywords: combinatorial genomics; genetic manipulation; phytochemistry; polymerization; secondary metabolic; tissue engineering

Document Type: Review Article


Affiliations: Horvath Laboratory of Bioseparation Science, Institute of Analytical Chemistry, University of Innsbruck, A-6020 Innsbruck, Innrain, 52A, Austria.

Publication date: 2005-03-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more