If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Lactate in Solid Malignant Tumors: Potential Basis of a Metabolic Classification in Clinical Oncology

$63.10 plus tax (Refund Policy)

Buy Article:

Abstract:

A number of studies have demonstrated that malignant transformation is associated with an increase in glycolytic flux and in anaerobic and aerobic cellular lactate excretion. Using quantitative bioluminescence imaging in various primary carcinomas in patients (uterine cervix, head and neck, colorectal region) at first diagnosis of the disease, we showed that lactate concentrations in tumors in vivo could be relatively low or extremely high (up to 40 μmol / g) in different individual tumors or within the same lesion. In all tumor entities investigated, high molar concentrations of lactate were correlated with a high incidence of distant metastasis already in an early stage of the disease. Low lactate tumors (< median of approx. 8 μmol / g) were associated with both a longer overall and disease free survival compared to high lactate lesions (lactate > approx. 8 μmol / g). Lactate dehydrogenase was found to be upregulated in most of these tumors compared to surrounding normal tissue. Numerous recent reports support these data by demonstrating various biological activities of lactate that can enhance the malignant behavior of cancer cells. These mechanisms include the activation of hyaluronan synthesis by tumor-associated fibroblasts, upregulation of VEGF and of HIF-1alpha, and direct enhancement of cellular motility which generates favorable conditions for metastatic spread. Thus, lactate accumulation not only mirrors but also actively enhances the degree of tumor malignancy. We propose that determination of lactate in primary tumors may serve as a basis for a novel metabolic classification which can lead to an improvement of prognosis and therapy in clinical oncology.

Keywords: bioluminescence; human tumors; lactate; malignant behavior; metabolic imaging

Document Type: Review Article

DOI: http://dx.doi.org/10.2174/0929867043364711

Affiliations: Institute of Physiology and Pathophysiology, Johannes Gutenberg-University of Mainz, Duesbergweg 6, 55099 Mainz, Germany

Publication date: August 1, 2004

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more