Skip to main content

Blocking Ca2+ Entry: A Way to Control Cell Proliferation

Buy Article:

$63.00 plus tax (Refund Policy)


Ca2+ signalling is involved in virtually all cellular processes: among the others, it controls cell survival, proliferation and death regulating a plethora of intracellular enzymes located in the cytoplasm, nucleus and organelles.

Changes in the cytosolic free Ca2+ concentration may be due either to release from the intracellular Ca2+ stores or to influx from the extracellular medium, through the opening of plasma membrane calcium-permeable channels. In particular, Ca2+ entry from the extracellular space is a mechanism able to sustain long lasting intracellular Ca2+ elevations: this signal, activated by many growth factors and mitogens in normal and tumoral tissues, is linked to DNA transcription and duplication, finally leading to cell proliferation.

In the last years many informations have been provided about the transduction mechanisms related to Ca2+ entry induced by mitogenic factors, mostly binding to tyrosine kinase receptors, but also to G-protein coupled ones. Nevertheless, some key points remain to be fully clarified: among them, the molecular structure of the Ca2+ channels involved, their regulation by intracellular messengers, and the modes through which specificity is achieved.

The increasing knowledge on Ca2+ entry-dependent control of proliferation may provide a more satisfactory understanding of pathological alterations, including cancer progression and angiogenesis. A detailed description of the mechanisms that trigger Ca2+ entry, and in particular the definition of calcium-permeable channels and their modulators at the molecular levels, will greatly improve our possibility to take advantage of Ca2+ entry regulation as a therapeutic approach for the control of cell proliferation, designing antibodies or molecules with low side effects and specific channel blocker functions. The review will focus on this topic.

Keywords: Control Cell Proliferation; channel blocker; mitogenic factors; plasma membrane

Document Type: Review Article


Affiliations: Department of Animal and Human Biology, Via Accademia Albertina 13, I-10123 Torino, Italy

Publication date: June 1, 2004

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more