Skip to main content

Virtual Screening for Kinase Targets

Buy Article:

$63.00 plus tax (Refund Policy)

Kinases have become a major area of drug discovery and structure-based design. Hundreds of 3D structures for more than thirty different kinases are available to the public. High structural and sequence homology within the kinase gene family makes the remaining kinases ideal targets for homology modeling and virtual screening. Somewhat surprisingly, however, the number of publications about virtual screening of kinases is very low. Therefore, rather than reviewing the field of virtual screening for kinases, we attempt here a hybrid approach of presenting what is known and common practice together with new studies on CDK2 and SRC kinase. To illustrate the challenges and pitfalls of virtual screening for kinase targets we focus on the question of how ranking is influenced by the database screened, the docking scheme, the scoring function, the activity of the compounds used for testing, and small changes in the binding pocket. In addition, a case study of finding irreversible inhibitors of ErbB2 through in silico screening is presented.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: atp binding pocket; database searching; lead identification; rational drug design

Document Type: Review Article

Affiliations: Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368, USA.

Publication date: 2004-03-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more