Skip to main content

The Vesosome - A Multicompartment Drug Delivery Vehicle

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Assembling structures to divide space controllably and spontaneously into subunits at the nanometer scale is a significant challenge, although one that biology has solved in two distinct ways: prokaryotes and eukaryotes. Prokaryotes have a single compartment delimited by one or more lipid-protein membranes. Eukaryotes have nested-membrane structures that provide internal compartments - such as the cell nucleus and cell organelles in which specialized functions are carried out. We have developed a simple method of creating nested bilayer compartments in vitro via the “interdigitated” bilayer phase formed by adding ethanol to a variety of saturated phospholipids. At temperatures below the gel-liquid crystalline transition, ™, the interdigitated lipid-ethanol sheets are rigid and flat; when the temperature is raised above ™, the sheets become flexible and close on themselves and the surrounding solution to form closed compartments. During this closure, the sheets can entrap other vesicles, biological macromolecules, or colloidal particles. The result is efficient and spontaneous encapsulation without disruption of even fragile materials to form biomimetic nano-environments for possible use in drug delivery, colloidal stabilization, or as microreactors. The vesosome structure can take full advantage of the 40 years of progress in liposome development including steric stabilization, pH loading of drugs, and intrinsic biocompatibility. However, the multiple compartments of the vesosome give better protection to the interior contents in serum, leading to extended release of model compounds in comparison to unilamellar liposomes.

Keywords: bilayers; drug delivery; fusion; lipids; liposomes; permeability; serum

Document Type: Review Article

DOI: http://dx.doi.org/10.2174/0929867043456197

Affiliations: Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5080, USA.

Publication date: January 1, 2004

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
ben/cmc/2004/00000011/00000002/art00006
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more