Parasite Mitochondria as Drug Target: Diversity and Dynamic Changes During the Life Cycle

$63.00 plus tax (Refund Policy)

Buy Article:


Parasites have developed a wide variety of physiological functions to survive within the specialized environments of the host. Regarding energy metabolism, which represents an essential factor for survival, parasites adapt low oxygen tension in host mammals using metabolic systems that differ substantially from those of the host. Most parasites do not use free oxygen available within the host, but employ systems other than oxidative phosphorylation for ATP synthesis. Furthermore, parasites display marked changes in mitochondrial morphology and components during the life cycle, and these represent very interesting elements of biological processes such as developmental control and environmental adaptation.

The enzymes in parasite-specific pathways offer potential targets for chemotherapy. Cyanide-insensitive trypanosome alternative oxidase (TAO) is the terminal oxidase of the respiratory chain of long slender bloodstream forms of the African trypanosome, which causes sleeping sickness. Recently, the most potent inhibitor of TAO to date, ascofuranone, was isolated from the phytopathogenic fungus, Ascochyta visiae. The inhibitory mechanisms of ascofuranone have been revealed using recombinant enzyme.

Parasite-specific respiratory systems are also found in helminths. The NADH-fumarate reductase system in mitochondria form a final step in the phosphoenolpyruvate carboxykinase (PEPCK)-succinate pathway, which plays an important role in anaerobic energy metabolism for the Ascaris suum adult. Enzymes in this system, such as NADH-rhodoquinone reductase (complex I) and rhodoquinol-fumarate reductase (complex II), form promising targets for chemotherapy. In fact, a specific inhibitor of nematode complex I, nafuredin, has been found in mass-screening using parasite mitochondria.

Keywords: alternative oxidase; anaerobic respiration; ascaris suum; ascofuranone; complex II; quinol oxidase; quinol-fumarate reductase; trypanosoma brucei brucei

Document Type: Review Article


Affiliations: Department of Biomedical Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113- 0033, Japan.

Publication date: December 1, 2003

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more