Skip to main content

New Insights into the Coagulation System and Implications for New Therapeutic Options with Recombinant Factor VIIa

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:



The classical model of the coagulation cascade is to be replaced by a new, cell based model of coagulation emphasizing the interaction of coagulation proteins with cell surfaces of platelets subendothelial cells and the endothelium. According to current knowledge hemostasis is initiated by the formation of a complex between tissue factor (TF) exposed as a result of a vessel wall injury, and already activated factor (F) VII (FVIIa) normally present in the circulating blood. The TF-FVIIa complexes convert FX into FXa on the TF bearing cell. FXa then activates prothrombin (FII) into thrombin (FIIa). This limited amount of thrombin activates FVIII, FV, FXI and platelets. Thrombin-activated platelets change shape and as a result will expose negatively charged phospholipids, which form the perfect template for full thrombin generation involving FVIIIa and FIXa. Thrombin also converts fibrinogen into fibrin, it activates the fibrin stabilizing FXIII, as well as the thrombin activatable fibrinolysis inhibitor (TAFI). The fibrin structure has been found to be dependent on the amount of thrombin formed and the rate of thrombin generation. Full thrombin generation is necessary for the formation of a tight, stable fibrin hemostatic plug resistant to premature fibrinolysis which is required for full and sustained hemostasis. Since thrombin has such a crucial role in providing hemostasis, any agent that enhances thrombin generation in situations with impaired thrombin formation may be characterized as a ‘general hemostatic agent’ - a term that has been applied to recombinant activated FVII.

Recombinant coagulation factor VIIa (rFVIIa; NovoSeven) was originally developed and approved for the treatment of bleeding episodes and the prevention of bleeding during surgery in hemophilia patients with inhibitors and in patients with auto-antibodies against FVIII or FIX (acquired hemophilia). As rFVIIa in pharmacological doses enhances thrombin generation on activated platelets, it has been suggested that rFVIIa may also help to improve hemostasis in other situations involving impaired thrombin generation. This is substantiated by the accumulation of published data indicating that rFVIIa is able to control bleeding in patients with thrombocytopenia or platelet function deficiencies as well as in patients without pre-existing coagulopathies.



Keywords: Coagulation System; Recombinant Factor VIIa; TF-FVIIa complexes; acquired hemophilia; premature fibrinolysis; prothrombin; thrombocytopenia

Document Type: Review Article

DOI: http://dx.doi.org/10.2174/0929867033457728

Publication date: May 1, 2003

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more