Skip to main content

Ribonucleases: From Prototypes to Therapeutic Targets? (General Articles)

Buy Article:

$63.00 plus tax (Refund Policy)


Ribonucleases (RNases) have proven to be excellent model systems for the study of protein structure, folding and stability, and enzyme catalysis, resulting in four Nobel Prize lectures in chemistry. Beside this ‘academic’ success, RNases are also relevant from a medical point of view. The RNA population in cells is controlled post-transcriptionally by ribonucleases (RNases) of varying specificity. Other therapeutic proteins like angiogenin, neurotoxins, and plant allergens have RNase activity or significant structural homology to known RNases. Also, RNase activity in serum and cell extracts is elevated in a variety of cancers and infectious diseases. To date, no clinical drugs are available that target this important class of enzymes. Small-molecule RNase inhibitors derived from mono- or dinucleotides, as well as pentavalent oxyvanadate transition state analogs are found to be rather marginal inhibitors. These compounds bind their target RNase with dissociation constants in the micromolar range, whereas transition state theory predicts picomolar values for genuine transition states. The rational design for new transition state analog inhibitors requires knowledge of the precise nature of the transition state and of the occurring intermolecular enzyme-substrate interactions. This review focuses on these chemical and structural features of RNase A and RNase T1, the best characterized members of two separate classes of ribonucleases.

Keywords: catalysis; inhibitor design; pentavalent phosphorus; rna cleavage; rnase a; rnase t1; transition state analog

Document Type: Review Article


Publication date: 2003-05-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more