Skip to main content

Partitioning Methods for the Identification of Active Molecules

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:



The dramatically increasing number of compounds that become available for biological evaluation presents a significant challenge for database design, management, and mining. Computational approaches for screening, profiling, or filtering of large compound collections are by now widely used in pharmaceutical research. Among popular compound classification and database mining techniques, partitioning methods are computationally very efficient and particularly suitable for the analysis of increasingly large molecular databases, as they do not depend on pair-wise comparisons of compounds to assess molecular similarity or diversity. Promising applications of partitioning algorithms include diversity selection, searching for compounds with desired biological activity, or the derivation of predictive models from screening datasets. Compound partitioning is introduced here in the context of virtual screening and different partitioning methods are discussed that operate in low-dimensional or other chemical descriptor spaces, including a number of practical drug-discovery-related applications.





Keywords: activity-based selection; chemical spaces; clustering and partitioning; compound classification; database mining; drug discovery; molecular descriptors; virtual screening

Document Type: Review Article

DOI: http://dx.doi.org/10.2174/0929867033457881

Publication date: April 1, 2003

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
ben/cmc/2003/00000010/00000008/art00006
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more