Skip to main content

Molecular Enzymology Underlying Regulation of Protein Phosphatase-1 by Natural Toxins

Buy Article:

$63.00 plus tax (Refund Policy)

The protein serine / threonine phosphatases constitute a unique class of enzymes that are critical for cell regulation, as they must counteract the activities of thousands of protein kinases in human cells. Uncontrolled inhibition of phosphatase activity by toxic inhibitors can lead to widespread catastrophic effects. Over the past decade, a number of natural product toxins have been identified that specifically and potently inhibit protein phosphatase-1 and -2A. Amongst these are the cyanobacteria-derived cyclic heptapeptide microcystin-LR and the polyether fatty acid okadaic acid from dinoflagellate sources.

The molecular mechanism underlying potent inhibition of protein phosphatase-1 by these toxins is becoming clear through insights gathered from diverse sources. These include:

1. Comparison of structure-activity relationships amongst the different classes of toxins.

2. Delineation of the structural differences between protein phosphatase-1 and -2A that account for their differing sensitivity to toxins, particularly okadaic acid and microcystin-LR.

3. Determination of the crystal structure of protein phosphatase-1 with microcystin-LR, okadaic acid and calyculin bound.

4. Site-specific mutagenesis and biochemical analysis of protein phosphatase-1 mutants.

Taken together, these data point to a common binding site on protein phosphatase-1 for okadaic acid, microcystin-LR and the calyculins. However, careful analysis of these data suggest that each toxin binds to the common binding site in a subtly different way, relying on distinct structural interactions such as hydrophobic binding, hydrogen bonding and electrostatic interactions to different degrees.

The insights derived from studying the molecular enzymology of protein phosphatase-1 may help explain the different sensitivities of other structurally conserved protein serine / theonine phosphatases to toxin inhibition. Furthermore, studies on the binding of structurally diverse toxins at the active site of protein phosphatase-1 are leading to a clearer understanding of potential enzyme-substrate interactions in this important class of cell regulatory proteins.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Molecular Enzymology; Natural Toxins; Protein

Document Type: Review Article

Publication date: 2002-11-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more