Skip to main content

Structural Basis of the Dysfunctioning of Human 2-Oxo Acid Dehydrogenase Complexes

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

2-oxo acid dehydrogenase complexes are a ubiquitous family of multienzyme systems that catalyse the oxidative decarboxylation of various 2-oxo acid substrates. They play a key role in the primary energy metabolism: in glycolysis (pyruvate dehydrogenase complex), the citric acid cycle (2-oxoglutarate dehydrogenase complex) and in amino acid catabolism (branched-chain 2-oxo acid dehydrogenase complex). Malfunctioning of any of these complexes leads to a broad variety of clinical mani-festations. Deficiency of the pyruvate dehydrogenase complex predominantly leads to lactic acidosis combined with impairment of neurological function and / or delayed growth and development. Maple urine disease is an inborn metabolic error caused by dysfunction of the branched-chain 2-oxo acid dehydrogenase complex. An association between both Alzheimer disease and Parkinson's disease and the 2-oxoglutarate dehydrogenase gene has been reported.

Currently a wealth of both genetic and structural information is available. Three-dimensional structures of three components of the complex are presently available: of the pyruvate dehydrogenase component (E1), of the dihydrolipoyl acyltransferase component (E2) and of the lipoamide dehydrogenase component (E3). Moreover, detailed information on the reaction mechanism, regulation and the interactions between the different components of the complex is now at hand. Although only one of the structures is of human origin (E1b), model building by homology modelling allows us to investigate the causes of dysfunction.

In this review we have combined this knowledge to gain more insight into the structural basis of the dysfunctioning of the 2-oxo acid dehydrogenase complexes.

Keywords: Alzheimer disease; Chloramphenicol acetyltransferase; Dihydrolipoamide dehydrogenase component; Human 2-Oxo Acid Dehydrogenase; Maple Syrup; Protein-Protein Interactions; Transketolase; amino-pyrimidine moiety; dihydrolipoamide dehydrogenase component (E3); heterotetrameric

Document Type: Review Article

DOI: http://dx.doi.org/10.2174/0929867023370996

Publication date: February 1, 2002

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
ben/cmc/2002/00000009/00000004/art00006
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more