Skip to main content

Why Artemisinin and Certain Synthetic Peroxides are Potent Antimalarials. Implications for the Mode of Action

Buy Article:

$63.00 plus tax (Refund Policy)


The discovery that the sesquiterpene peroxide yingzhaosu A (13) and 1,2,4-trioxane artemisinin (14) are active against chloroquine-resistant strains of Plasmodium falciparum, has opened a new era in the chemotherapy of malaria. In vitro and in vivo tests with synthetic structurally simpler trioxanes clearly demonstrate that much of the skeleton of 14 is redundant and that chirality is not required for activity. In addition, structure-activity relations and the search for the pharmacophore reveal that high antimalarial activity can be displayed by molecules which do not resemble the geometry of 13 and 14 at all. The possible mode of action of 13, 14, and synthetic peroxides is examined. They are believed to kill intraerythrocytic Plasmodium by interacting with the heme discarded by proteolysis of ingested hemoglobin. Complexation of heme with the peroxide bond followed by electron transfer generates an oxy radical that evolves to the ultimate parasiticidal agent. Experiments with ferrous reagents indicate that active peroxides including 14 and its congeners kill the parasite by alkylation with a sterically non-encumbered C-centered radical. However, another possibility is the involvement of a Fe(IV)=O species as the toxic agent. The review covers our own and other contributions to this timely topic and evaluates the different mechanisms proposed for the mode of action of peroxidic antimalarials.

Keywords: 1,2,4-trioxane artemisinin; Antimalarials; Deoxyartemisinin; Peroxides; Trioxanes; dihydrofolate reductase; synthetase; yingzhaosu

Document Type: Review Article


Publication date: December 1, 2001

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more