Skip to main content

Macrocycles Mimic The Extended Peptide Conformation Recognized By Aspartic, Serine, Cysteine and Metallo Proteases

Buy Article:

$55.00 plus tax (Refund Policy)

It has been previously demonstrated that aspartic, serine, metallo and cysteine proteases bind to their inhibitors and substrate analogues in a single conformation, the saw-tooth or extended beta-strand. Consequently a generic approach to the development of protease inhibitors is the use of constraints that conformationally restrict putative inhibitor molecules to an extended form. In this way the inhibitor is pre-organized for binding to a protease and does not need to rearrange its structure. One constraining device that has proven to be effective for such pre-organization is macrocyclization. This article illustrates the general principle that macrocycles, especially those composed of 3-4 amino acids and usually 13-17 ring atoms, can effectively mimic the extended conformation of short peptide sequences. Such structure-stabilising macrocycles are stable to degradation by proteases, valuable components of potent protease inhibitors, and in many cases they are also bioavailable.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: ASPARTIC PROTEASES; Activity; HIV-1 Protease Inhibitors; INHIBITORS; MACROCYCLIC; Macrocycles; Metallo Proteases; Protease enzymes; Renin

Document Type: Review Article

Publication date: 2001-07-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more