Skip to main content

Heme Aggregation Inhibitors Antimalarial Drugs Targeting an Essential Biomineralization Process

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Malaria, resulting from the parasites of the genus Plasmodium, places an untold burden on the global population. As recently as 40 years ago, only 1 0 percent of the worlds population was at risk from malaria. Today, over 40 percent of the worlds population is at risk. Due to increased parasite resistance to traditional drugs and vector resistance to insecticides, malaria is once again resurgent. An emergent theme from current strategies for the development of new antimalarials is that metal homeostasis within the parasite represents an important drug target.

During the intra-erythrocytic phase of its life cycle, the malaria parasite can degrade up to 75 percent of an infected cell hemoglobin. While hemoglobin proteolysis yields requisite amino acids, it also releases toxic free heme (Fe(III)PPIX). To balance the metabolic requirements for amino acids against the toxic effects of heme, malaria parasites have evolved a detoxification mechanism which involves the formation of a crystalline heme aggregate known as hemozoin. An overview of the biochemistry of the critical detoxification process will place it in the appropriate context with regards to drug targeting and design.

Quinoline-ring antimalarial drugs are effective against the intraerythrocytic stages of pigment-producing parasites. Recent work on the mechanism of these compounds suggests that they prevent the formation of hemozoin. Evidence for such a mechanism is reviewed, especially in the context of the newly reported crystal structure of hemozoin. Additionally, novel drugs, such as the hydroxyxanthones, which have many of the characteristics of the quinolines are currently being investigated.

Recent work has also highlighted two classes of inorganic complexes that have interesting antimalarial activity (1) metal-N4O2 Schiff base complexes and (2) porphyrins. The mechanism of action for these complexes is discussed. The use of these complexes as probes for the elucidation of structure-activity relationships in heme polymerization inhibitor design and the loci of drug resistance is also detailed.

As the biochemistry of the complicated interactions between host, parasite, and vector become better understood, the rationale for new antimalarial drug treatments will continue to improve. Clearly, the homeostasis of metal ions is a complicated biochemical process and is not completely understood. For the immediate future, it does, however, provide a clear target for the development of new and improved treatments for malaria.

Keywords: Biomineralization process; Biotransportation and Localization; Heme Aggregation Inhibitors; Hemoglobin Proteolysis; Hemoglobin tetramer; Hemozoin Inhibition; High spine monomeric; Metalloporphyrin Complexes; Schiff Based Metallodrugs; Surrogate oxyanions

Document Type: Review Article

DOI: http://dx.doi.org/10.2174/0929867013373840

Publication date: February 1, 2001

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more