Skip to main content

On the Temporal Self-Organisation of Saccharomyces cerevisae

Buy Article:

$63.00 plus tax (Refund Policy)

The budding yeast Saccharomyces cerevisiae has been one of the premier models for the study of eukaryote molecular biology for over 50 years. These studies have revealed a complex and robust yeast phenome and elucidated many of the underlying principles common to all eukaryotes including DNA, RNA, protein and metabolite interaction networks. However the degree complexity and integration of the cellular network has made dissecting the temporal dynamics of the phenotype a rather daunting task. Here I review work on glycolytic oscillation, oscillation observed in continuous culture and colony pattern formation, and find that redox is a central thread underpinning these phenomena. The outputs of the systems involve sub-networks that are at the core of the cellular network, e.g., glycolysis, stress response, respiration, cell cycle, amino acid biosynthesis, leading to the conclusion that a fundamental redox attractor underpins these core cellular processes.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Saccharomyces cerevisae; glycolytic; oscillation; phenotype

Document Type: Review Article

Affiliations: Systems Biology Institute, 9S3, Shinanomachi Research Park, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.

Publication date: 01 December 2004

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more