Skip to main content

Structural Analysis of Dihydrofolate Reductase and Thymidylate Synthase from Mammalian and Pathogenic Organisms

Buy Article:

$68.00 + tax (Refund Policy)

The ubiquitous enzyme dihydrofolate reductase (DHFR) is responsible for the reduction of 5,6-dihydrofolate to 5,6,7,8-tetrahydrofolate in an NADPH-dependent manner. The enzymes DHFR and thymidylate synthase (TS), which converts deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP), are coupled in the folate pathway as the product of TS (dihydrofolate) is the substrate for DHFR. Because of their crucial roles in the production of the precursors of RNA and DNA for protein synthesis in every organism, DHFR and TS are key pharmacological targets for the treatment of cancer, as well as bacterial and opportunistic infections. The effectiveness of antifolates lies in their ability to selectively disrupt folate pathways that ultimately lead to cell death. However, in many instances the efficacy of clinically available antifolates is limited by their ineffectiveness against many pathogenic organisms or by the increase in drug-resistance, mainly due to the rise of mutations observed in clinical isolates. This review surveys more than 300 DHFR structures and over 200 TS structures representing 28 species of enzyme. Novel antifolates continue to be synthesized in an effort to enhance species selectivity and to increase potency without added toxicity. The focus of this review will be on DHFR and TS enzymes from mammalian and pathogenic organisms that have become the target of bioterrorism or have become a major medical concern as drug-resistance has overtaken the efficacy of many current treatments.

Keywords: Antifolate; NADPH; Pneumocystis; computational modeling; dihydrofolate reductase; drug-resistance; pathogenic organisms; structure; thymidylate synthase; trimethoprim

Document Type: Research Article

Publication date: 01 September 2012

More about this publication?
  • Current Enzyme Inhibition aims to publish all the latest and outstanding developments in enzyme inhibition studies with regards to the mechanisms of inhibitory processes of enzymes, recognition of active sites, and the discovery of agonists and antagonists, leading to the design and development of new drugs of significant therapeutic value. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a range of enzymes that can be exploited for drug development. Current Enzyme Inhibition is an essential journal for every pharmaceutical and medicinal chemist who wishes to have up-to-date knowledge about each and every development in the study of enzyme inhibition.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content