Skip to main content

Metabolic Syndrome Targets

Buy Article:

$68.00 + tax (Refund Policy)

The metabolic syndrome is a cluster of easy-to-measure clinical phenotypes that serve as markers for increased risk for CVD and diabetes. There is no universal agreement as to the underlying pathophysiology of the metabolic syndrome. At its core, the metabolic syndrome is the result of energy excess; therefore treating obesity is a good strategy to reverse the clinical features of the metabolic syndrome. Hypertension is a special case, may not be part of the core pathophysiology of the metabolic syndrome, and will not be discussed. After a brief review of recent developments in the pathophysiology of the metabolic syndrome, this review will concentrate on peripheral targets in the following categories: ectopic fat and fat oxidation, intrinsic defects in substrate switching and mitochondrial biogenesis, lipolysis and lipid turnover, adipose tissue as an endocrine organ, nutrient / energy sensing systems, and inflammation. The advantages and pitfalls of these targets will be discussed with an eye towards the relevant literature.

Keywords: mitochondrial biogenesis; pathophysiology; phenotypes

Document Type: Review Article

Affiliations: Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.

Publication date: 01 October 2004

More about this publication?
  • CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will contain a series of timely in-depth reviews written by leaders in the field covering a range of current topics on drug targets involved in neurological and CNS disorders. As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content