Skip to main content

Phosphorylation-Dependent Protein-Protein Interaction Modules As Potential Molecular Targets for Cancer Therapy

Buy Article:

$68.00 + tax (Refund Policy)

Protein phosphorylation is a key event in signal transduction pathways. When upstream signals are stimulated, protein kinases are activated and phosphorylate their substrates, modulating their localization, conformation, and activity. In some cases, phosphorylated substrates become recognizable to other proteins—such interactions transduce and propel the signal onward. Certain domains specifically recognize phosphorylated residues of proteins, regulating cell growth and differentiation. Because the proteins that contain these domains also mediate diseases that are caused by dysregulated signal transduction, small molecules that inhibit such motifs are attractive candidates for the treatment of diseases, such as cancer. In this review, we summarize the domains that recognize phosphorylated proteins, particularly serine- and threonine-phosphorylated sequences in target proteins. In addition, we introduce a high-throughput screen that we developed to identify small-molecule inhibitors of phosphorylation-dependent protein-protein interactions. An example is presented, and the potential uses of this system are discussed.

Keywords: Cancer Therapy; Molecular Targets; Plk1; Protein phosphorylation; high throughput screening; polo box domain; protein-protein interaction; purpurogallin; small molecule; small-molecule inhibitors

Document Type: Research Article

Publication date: 01 December 2012

More about this publication?
  • Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will be devoted to a single timely topic, with series of in-depth reviews, written by leaders in the field, covering a range of current topics on drug targets. These issues will be organized and led by a guest editor who is a recognized expert in the overall topic. As the discovery, identification, characterisation and validation of novel human drug targets for drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content