Skip to main content

Redox Modification of Platelet Glycoproteins

Buy Article:

$63.00 plus tax (Refund Policy)


Platelets contain several glycoprotein receptors including the adhesion receptor glycoprotein Ib and the fibrinogen receptor glycoprotein IIbIIIa, also know as the αIIbβIIIa integrin. Both of these receptors contain thiol groups and vicinal thiols representing redox sensitive sites are present in αIIbβIIIa. Disulfide isomerases such as protein disulfide isomerase (PDI) that are on or recruited to the platelet surface have a role in platelet aggregation. Dynamic rearrangement of disulfide bonds in receptor signaling and platelet activation is a developing concept that requires an attacking thiol. Biochemically, a role for disulfide isomerization is suggested as the αIIbβIIIa integrin undergoes major structural changes upon activation centered around a disulfide knot in the integrin. Additionally, the P2Y12 ADP receptor is involved in platelet activation by most platelet agonists and contains extracellular thiols, making it a possible site for redox modification of platelet aggregation. Various forms of redox modulation of thiols or disulfides in platelet glycoproteins exist. These include modification by low molecular weight thiols such as reduced glutathione or homocysteine, oxidized glutathione or by nitric oxide (NO) derived from s-nitrosothiols. Levels of these redox compounds change in various disease states and in some cases physiologic concentrations of these compounds have been shown to modify platelet responsiveness. Additionally, platelets themselves contain a transplasma membrane redox system capable of reducing extracellular disulfide bonds. It is likely that a redox homeostasis exists in blood with the redox environment being controlled in a way analogous to the control of ionized calcium levels or the pH of blood. Changes in this homeostasis induced by disease states or pharmacologic agents that modify the platelet redox environment will modify platelet function.

Keywords: Glutathione; NADPH oxidase; electron microscopy (EM); protein disulfide isomerase (PDI); sulfhydryl labeling

Document Type: Research Article


Affiliations: University of Texas, Health Science Center at San Antonio, Mail Code 7880, 7703 Floyd C Drive,San Antonio, Texas 78229, USA.

Publication date: 2006-10-01

More about this publication?
  • Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will be devoted to a single timely topic, with series of in-depth reviews, written by leaders in the field, covering a range of current topics on drug targets. These issues will be organized and led by a guest editor who is a recognized expert in the overall topic. As the discovery, identification, characterisation and validation of novel human drug targets for drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more