Skip to main content

Paclitaxel Resistance: Molecular Mechanisms and Pharmacologic Manipulation

Buy Article:

$68.00 + tax (Refund Policy)



It has been approximately ten years since the Food and Drug Administration (FDA) approved paclitaxel for the treatment of platinum resistant epithelial ovarian carcinoma. Since the approval, the drug has found therapeutic applications in a variety of schedules and in a wide variety of epithelial malignancies. Its novel mechanism of action provided the hope that it would demonstrate anti-neoplastic activity in multidrug resistant tumor cells. Unfortunately, as with other chemotherapeutic drugs, resistance is commonly seen. Laboratory investigation has defined a wide variety of resistance mechanisms including overexpression of multidrug resistance (MDR-1) gene, molecular changes in the target molecule (β-tubulin), changes in apoptotic regulatory and mitosis checkpoint proteins, and more recently changes in lipid composition and potentially the overexpression of interleukin 6 (IL-6). This review describes the in vitro molecular data that define and support the various mechanisms of resistance and critically evaluates the evidence for the participation of these mechanisms in clinically relevant paclitaxel resistance. This review also explores pharmacologic attempts to modulate paclitaxel resistance, principally through inhibition of the MDR-1 drug efflux pump. Future avenues for drug resistance research and its pharmacologic manipulation in the clinic are discussed.





Keywords: cytokine; drug resistance; in vivo drug resistance assays; mdr; paclitaxel; pgp; reversal of drug resistance; tubulin

Document Type: Review Article

Publication date: 01 February 2003

More about this publication?
  • Current Cancer Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular drug targets involved in cancer, e.g. disease specific proteins, receptors, enzymes, genes.
    Each issue of the journal contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics on drug targets involved in cancer.
    As the discovery, identification, characterization and validation of novel human drug targets for anti-cancer drug discovery continues to grow; this journal has become essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content