Skip to main content

Diving Into the Lipid Bilayer to Investigate the Transmembrane Organization and Conformational State Transitions of P-type Ion ATPases

Buy Article:

$63.00 plus tax (Refund Policy)


Although membrane proteins constitute more than 20% of the total proteins, the structures of only a few are known in detail. An important group of integral membrane proteins are ion-transporting ATPases of the P-type family, which share the formation of an acid-stable phosphorylated intermediate as part of their reaction cycle. There are several crystal structures of the sarcoplasmic reticulum Ca2+ pump (SERCA) revealing different conformations, and recently, crystal structures of the H+-ATPase and the Na+/K+-ATPase were reported as well. However, there are no atomic resolution structures for other P-type ATPases including the plasma membrane calcium pump (PMCA), which is integral to cellular Ca2+ signaling. Crystallization of these proteins is challenging because there is often no natural source from which the protein can be obtained in large quantities, and the presence of multiple isoforms in the same tissue further complicates efforts to obtain homogeneous samples suitable for crystallization. Alternative techniques to study structural aspects and conformational transitions in the PMCAs (and other P-type ATPases) have therefore been developed. Specifically, information about the structure and assembly of the transmembrane domain of an integral membrane protein can be obtained from an analysis of the lipid-protein interactions. Here, we review recent efforts using different hydrophobic photo-labeling methods to study the non-covalent interactions between the PMCA and surrounding phospholipids under different experimental conditions, and discuss how the use of these lipid probes can reveal valuable information on the membrane organization and conformational state transitions in the PMCA, Na+/K+-ATPase, and other P-type ATPases.

Keywords: 8-(5'-azido-O-hexanoylsalicylami-do)octanoic acid (AS86); Ca2+-ATPase; Ca2+-ATPase activity; Na+/K+-ATPase; P-type ATPase; PMCA; SERCA; hydrophobic photo-labeling; lipid-protein interaction; membrane protein; photo-labeling group TPD

Document Type: Research Article


Publication date: 2011-05-01

More about this publication?
  • Current Chemical Biology aims to publish full-length and mini reviews on exciting new developments at the chemistry-biology interface, covering topics relating to Chemical Synthesis, Science at Chemistry-Biology Interface and Chemical Mechanisms of Biological Systems.

    Current Chemical Biology covers the following areas: Chemical Synthesis (Syntheses of biologically important macromolecules including proteins, polypeptides, oligonucleotides, oligosaccharides etc.; Asymmetric synthesis; Combinatorial synthesis; Diversity-oriented synthesis; Template-directed synthesis; Biomimetic synthesis; Solid phase biomolecular synthesis; Synthesis of small biomolecules: amino acids, peptides, lipids, carbohydrates and nucleosides; and Natural product synthesis).

    Science at Chemistry-Biology Interface (Chemical informatics; Macromolecular catalysts and receptors; Enzymatic synthesis; Biosynthetic engineering; Combinatorial biosynthesis; Plant cell based chemistry; Bacterial and viral cell based chemistry; Chemistry of cellular processes in plants/animals; Receptor chemistry; Cell signaling chemistry; Drug design through understanding of disease processes; Synthetic biology; New high throughput screening techniques; Small molecular array fabrication; Chemical genomics; Chemical and biological approaches to carbohydrates proteins and nucleic acids design; Chemical and biological regulation of biosynthetic pathways; and Unnatural biomolecular analogs).
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more