Skip to main content

Iron and Iron Chelators: A Review on Potential Effects on Skin Aging

Buy Article:

$63.00 plus tax (Refund Policy)

Similar to oxygen, iron is essential for aerobic life and energy production. Akin to oxygen, iron can be toxic and accelerate the aging process. Indeed, via the Fenton and Haber Weiss reactions, iron potentiates the generation of highly reactive oxygen free radicals such as hydroxyl radical, thus stimulating oxidative damage. The possibility that women’s longer life span relates to a lower iron status due to iron loss during reproductive life has been considered as a valid hypothesis, while hemochromatosis has been proposed as a model of iron overload to examine the effects of iron on the aging process. Iron plays an aggravating role in many diseases in which iron deprivation has been shown to be beneficial including ischaemia-reperfusion injury, neurological disorders and muscle diseases such as Duchenne’s muscular dystrophy. In the skin, excess iron combined with UV radiation exerts pro-oxidant effects while scavenging of free iron prevents or inhibits the toxic effects of UV radiation on both nude mice and human skin.

In this review, we propose that iron chelators and/or iron deprivation might play a significant role in the prevention of aging- associated diseases and conditions, in particular in the skin, and increase quality of life. Controlled iron deprivation might be achieved by regular blood donation in which case the quality of life of both the donor and the recipient is improved. Increasing the frequency of blood donation may thus significantly contribute to both individual and social wellbeing. Furthermore, we propose the skin as an accessible model for the study of aging and the effects of iron / iron deprivation on the aging mechanisms. Finally, we suggest that the development of topical iron chelators might represent a novel and simple approach to prevent skin aging, when such prevention has proven an important factor in increasing an aging populations’ quality of life.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Hemochromatosis; iron; iron chelators; oxidative stress; skin aging

Document Type: Research Article

Publication date: 01 December 2013

More about this publication?
  • Current Aging Science publishes frontier review and experimental articles in all areas of aging and age-related research that may influence longevity. This multidisciplinary journal will help in understanding the biology and mechanism of aging, genetics, pathogenesis, intervention of normal aging process and preventive strategies of age-related disorders. The journal publishes objective reviews written by experts and leaders actively engaged in research using cellular, clinical, molecular, and animal models, including lower organism models (e.g., yeast, Caenorhabditis elegans and Drosophila). In addition to the affect of aging on integrated systems, the journal also covers original articles on recent research in fast emerging areas of adults stem cells, brain imaging, calorie restriction, immunosenescence, molecular diagnostics, pharmacology and clinical aspects of aging. Manuscripts are encouraged that relate to developmental programming of aging and the synergistic mechanism of aging with cardiovascular diseases, obesity and neurodegenerative disorders.

    Book reviews, meeting reports and letters-to-the-editor and drug clinical trial studies are also published. The journal is essential reading for researchers, educators and physicians with interest in aging, age-related dementia and Alzheimer's disease and longevity. Current Aging Science provides a comprehensive coverage of the current state of aging research for gerontologists, neuroscientists, clinicians, health science planners, granting agencies and pharmaceutical scientists.

  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more