Skip to main content

Model Order Reduction for Circuit Level Simulation of RF MEMS Frequency Selective Devices

Buy Article:

$105.00 plus tax (Refund Policy)

The development of complex radio frequency circuits with integrated micromechanical devices requires the availability of tools for predictive design, optimization and verification of the complete system. In this paper, a methodology towards this goal is proposed. It enables the extraction of non-linear low order models of vibrating micromechanical devices suitable for use in a standard circuit level simulator. The reduction of the complexity of the model is achieved by using moment matching model order reduction, together with an approximated lumped description of the electrostatic forces. In this way, both high simulation accuracy and low computational complexity are obtained.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2008-02-01

More about this publication?
  • The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more