Skip to main content

Formation of Three-Dimensional Islands in the Active Region of InGaN Based Light Emitting Diodes Using a Growth Interruption Approach

Buy Article:

$105.00 plus tax (Refund Policy)

Here, we develop a technological approach to the formation of three-dimensional island-like structures in the active medium of InGaN/GaN based light emitting diodes with an enhanced efficiency with respect to reference quantum wells emitting at the same wavelengths. The reference structures contain two-dimensional In x Ga1– x N quantum wells with x ≤ 18% immediately overgrown after their formation. The method consists in the application of a growth interruption in N2 or N2–H2 mixed atmospheres at different H2 flows and times after the deposition of In0.18Ga0.82N quantum wells, prior to their overgrowth by a GaN layer. The growth interruptions allow a controlled blue shift of the emission peak position with respect to that of the In0.18Ga0.82N structure. The integrated photoluminescence intensity of the so-formed structures is about 1.5 times higher than that of the reference structures emitting at the same peak wavelengths. Light emitting diode structures subjected to growth interruption exhibit higher external quantum efficiency than the reference structures emitting at the same wavelengths. We demonstrate that the observed phenomenon is related to a better charge carrier confinement within a quantum well due to the transformation of planar InGaN layers into laterally connected flat islands.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 August 2015

More about this publication?
  • Science of Advanced Materials (SAM) is an interdisciplinary peer-reviewed journal consolidating research activities in all aspects of advanced materials in the fields of science, engineering and medicine into a single and unique reference source. SAM provides the means for materials scientists, chemists, physicists, biologists, engineers, ceramicists, metallurgists, theoreticians and technocrats to publish original research articles as reviews with author's photo and short biography, full research articles and communications of important new scientific and technological findings, encompassing the fundamental and applied research in all latest aspects of advanced materials.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more