Skip to main content

Polyurethane Nanocomposites Reinforced with Surface Modified Halloysite Nanotubes

Buy Article:

$105.00 plus tax (Refund Policy)

The physical properties of polyurethane (PU) reinforced with surface modified halloysite nanotubes (HNTs) were investigated. The HNTs were modified with two different surface modifiers: n-octadecyltrimethoxysilane (OTMS) and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPS). The external surface modifiers were introduced through a chemical vapor adsorption (CVA) process. The dynamic light scattering of HNTs dispersed solution indicates that the OTMS-modified HNTs (O-HNTs) are dispersed in THF better than unmodified one. The modified HNTs were mixed with PU resin by solution blending. The PU/O-HNTs nanocomposites show significant improvements in tensile and thermal properties. At 0.5 wt% O-HNTs, the nanocomposite shows large increase in tensile strength and modulus, and 30% increase in elongation at break with respect to the unfilled PU. The simultaneous improvement in modulus, strength, and ductility is attributed to the interaction between the well-dispersed O-HNTs and the PU matrix. The application of modified HNTs for flame retardant nanocomposite was done by loading bisphenol-A bis(diphenyl phosphate) (BDP) into the hydrophobically modified lumen of HNTs. The exterior surface was subsequently modified with AEAPS using a CVA process. The AEAPS-modified HNTs containing BDP show improved flame retardant performance without sacrificing the mechanical properties.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 May 2015

More about this publication?
  • Science of Advanced Materials (SAM) is an interdisciplinary peer-reviewed journal consolidating research activities in all aspects of advanced materials in the fields of science, engineering and medicine into a single and unique reference source. SAM provides the means for materials scientists, chemists, physicists, biologists, engineers, ceramicists, metallurgists, theoreticians and technocrats to publish original research articles as reviews with author's photo and short biography, full research articles and communications of important new scientific and technological findings, encompassing the fundamental and applied research in all latest aspects of advanced materials.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more