Computational Modeling of Nanoparticle Targeted Drug Delivery

$113.00 plus tax (Refund Policy)

Buy Article:


Nanomedicine is a promising application of nanotechnology in medicine, which can drastically improve drug delivery efficiency through targeted delivery. However, characterization of the nanoparticle targeted delivery process under vascular environment is very challenging due to the small scale of nanoparticles and the complex in vivo vascular system. To understand such complicated system, various computational models are developed to help reveal nanoparticle targeted delivery process and design nanoparticles for optimal delivery. This article discusses a few computational tools to model the nanoparticle delivery process and design nanoparticles for efficient targeted delivery. The modeling approaches span from continuum vascular flow, particle Brownian adhesion dynamics, to molecular level ligand-receptor binding. Computer simulation is envisioned to be able to optimize drug carrier design and predict drug delivery efficiency for patient specific vascular environment.


Document Type: Research Article


Publication date: March 1, 2012

More about this publication?
  • Reviews in Nanoscience and Nanotechnology (RNN) is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. RNN publishes comprehensive reviews articles on all aspects of nanoscale science and technology dealing with materials synthesis, nanochemistry, processing, nanofabrication, nanoprobes, spectroscopy, properties, fullerenes, nanocomposites, theoretical and computational nanotechnology, nanophysics, nanoengineering, nanoelectronics, nano-optics, nano-mechanics, nanomagnetics, nanodevices, biological systems, nanobiotechnology, nanomedicine, drug delivery, nanotoxicology.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more