If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Free Content Structural and Electrical Properties of Ozone Irradiated Carbon Nanotube Yarns and Sheets

 Download
(PDF 5,675.3kb)
 
Download Article:

Abstract:

Poor electrical conductivity of carbon nanotube (CNT) yarn and sheets has been one of the main hurdles in their practical application. Here, we demonstrate that the ozone irradiation can be an effective approach to reduce the resistivity of spun CNTs bundle with oxidization and induced defects. The CNT yarn and sheet are fabricated from a spinnable vertically aligned CNT forest synthesized by a thermal chemical vapor deposition. The electrical resistance of a CNT yarn and sheet reduces with a certain period of ozone irradiation; however for a long duration of ozone irradiation resistance increases with structural deformation of the CNTs. A comparative study on the effect of shapes between the CNT yarn and sheet with morphological change in the CNTs due to the ozone irradiation is performed. It was observed that the desorption energy of ozone molecules was slightly large for the CNT yarn due to the difference of adsorption sites. The fraction of defects induced by the ozone irradiated on the CNT yarn was estimated from the ultimate resistance change with temperature and Raman spectroscopy.

Keywords: CARBON NANOTUBE; CHEMICAL VAPOR DEPOSITION; OZONE IRRADIATION; SHEET; SPINNING; YARN

Document Type: Short Communication

DOI: http://dx.doi.org/10.1166/mex.2012.1092

Publication date: December 1, 2012

More about this publication?
  • Materials Express is a peer-reviewed multidisciplinary journal reporting emerging researches on materials science, engineering, technology and biology. Cutting-edge researches on the synthesis, characterization, properties, and applications of a very wide range of materials are covered for broad readership; from physical sciences to life sciences. In particular, the journal aims to report advanced materials with interesting electronic, magnetic, optical, mechanical and catalytic properties for industrial applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more