If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Glycopeptide-Decorated Nanoparticles as Drug Carriers for CNS: Effects of Surface Coverage and Carbohydrate Type

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

In order to study the ability of peptide-decorated PLGA Np to act as CNS drug delivery agents, the effect of various degrees of Np surface coverage by the peptide H2N-Gly-L-Phe-D-Thr-Gly-L-Phe-L-Leu-L-Ser(O-R)-CONH2 (R = -D-glucose) and of the type of carbohydrate present on Ser (R = H, -D-glucose, -D-xylose, -D-lactose, α-D-Mannose) were evaluated. Loperamide was used as a model drug and its presence on rat CNS was evaluated by means of its pharmacological effect (antinociceptive assay, hot-plate test). The pharmacological effect exerted by loperamide loaded into Np demonstrated to be strongly dependent on the degree of peptidic surface coverage of Np. Thus, in the presence of a high surface coverage, a very short effect is observed, which appears early on (0.5 min) after Np i.v. administration. Moreover, the sugar moiety influences markedly the CNS effect of loperamide loaded into the peptide-decorated Np: among the carbohydrates here examined, the presence of -D-glucose on the Ser of the peptide showed the best results, both in terms of the maximum effect and length.

Keywords: BLOOD-BRAIN BARRIER; BRAIN; LOPERAMIDE; NANOPARTICLES; PEPTIDE; PLGA; TARGETING

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jns.2009.1004

Publication date: December 1, 2009

More about this publication?
  • Recent advances in nanomaterials indicates that the central nervous system (CNS) is susceptible to nanoparticle induced alterations leading to functional or structural alterations. This knowledge is currently disseminated in vast array of journals dealing with broad subject areas related to pharmacology, toxicology, neuroscience or nanosciences. Thus, there is an urgent need to collect all these diverse information related to nanoscience and brain function in one place using Journal of Nanoneuroscience for the benefit of the scientific community, researchers, health planners, health care providers, policy makers, environmentalists, biologists, chemists, and physicist in this emerging area of medical science.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more