Skip to main content

RNAi Therapeutics: Current Status of Nanoncologic siRNA Delivery Systems

Buy Article:

$105.00 plus tax (Refund Policy)

With the growing comprehensive understanding of antisense gene silencing and the mechanism of RNA interference (RNAi), small interfering RNA (siRNA) has gained tremendous attention as a putative therapeutic agent for cancer therapy and other diseases. Due to its inherent target specificity, siRNA has the potential to inhibit tumor cell proliferation, metastasis and retard tumor growth, all-the-while avoiding off-target and adverse effects that are commonly observed with conventional anti-cancer drugs. There are a few ongoing clinical trials using siRNA for cancer treatment and other diseases. However, to date, none have been approved by FDA. Crucial for clinical success, delivery reagents that promote cellular uptake of the siRNA, maintain its stability in the presence of nucleases and prevent potential immunogenicity in vivo are required. Therefore, in recent years, a wide range of siRNA delivery systems have been developed and evaluated. In this review, we describe the major strategies currently employed for siRNA delivery followed by a presentation of the most recent works using such a variety of delivery systems and carriers in different cancers.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Review Article

Publication date: 2011-06-01

More about this publication?
  • Bionanoscience attempts to harness various functions of biological macromolecules and integrate them with engineering for technological applications. It is based on a bottom-up approach and encompasses structural biology, biomacromolecular engineering, material science, and engineering, extending the horizon of material science. The journal aims at publication of (i) Letters (ii) Reviews (3) Concepts (4) Rapid communications (5) Research papers (6) Book reviews (7) Conference announcements in the interface between chemistry, physics, biology, material science, and technology. The use of biological macromolecules as sensors, biomaterials, information storage devices, biomolecular arrays, molecular machines is significantly increasing. The traditional disciplines of chemistry, physics, and biology are overlapping and coalescing with nanoscale science and technology. Currently research in this area is scattered in different journals and this journal seeks to bring them under a single umbrella to ensure highest quality peer-reviewed research for rapid dissemination in areas that are in the forefront of science and technology which is witnessing phenomenal and accelerated growth.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more