Dynamics of Stimulated Atomic-Molecular Raman Conversion in a Bose-Einstein Condensate

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

A set of nonlinear evolution equations describing the dynamics of atoms, molecules, and photons in the course of stimulated atomic-molecular conversion in a Bose-Einstein condensate is derived and studied in the mean-field approximation. It is shown that conversion can be periodic or aperiodic in time, the rate of the process being determined to a considerable extent by the initial density of particles and by the initial phase difference. Depending on the initial conditions, various conversion modes can be realized. The possibility of stabilization of a special state (of rest) of the system for nonzero initial number densities of particles is predicted. It is pointed out that coherence of a Bose condensate of atoms, molecules, and photons predetermines the possibility of phase control of the conversion process.

Keywords: AMPLITUDE; ATOM; BOSE-EINSTEIN CONDENSATION; DENSITY; ELLIPTIC FUNCTIONS; MOLECULE; PERIOD; RAMAN CONVERSION

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jno.2009.1009

Publication date: April 1, 2009

More about this publication?
  • Journal of Nanoelectronics and Optoelectronics (JNO) is an international and cross-disciplinary peer reviewed journal to consolidate emerging experimental and theoretical research activities in the areas of nanoscale electronic and optoelectronic materials and devices into a single and unique reference source. JNO aims to facilitate the dissemination of interdisciplinary research results in the inter-related and converging fields of nanoelectronics and optoelectronics.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more